文章目录
  1. 1. 一. Hadoop基准测试
    1. 1.1. Hadoop自带了几个基准测试,被打包在几个jar包中。本文主要是cloudera版本测试
      1. 1.1.1. (1)、Hadoop Test
        1. 1.1.1.1. 当不带参数调用hadoop-test-0.20.2-cdh3u3.jar时,会列出所有的测试程序:
      2. 1.1.2. (2) TestDFSIO write
        1. 1.1.2.1. TestDFSIO用于测试HDFS的IO性能,使用一个MapReduce作业来并发地执行读写操作,每个map任务用于读或写每个文件,map的输出用于收集与处理文件相关的统计信息,reduce用于累积统计信息,并产生summary。TestDFSIO的用法如下:
        2. 1.1.2.2. 以下的例子将往HDFS中写入10个1000MB的文件:
      3. 1.1.3. (3) TestDFSIO read
        1. 1.1.3.1. 以下的例子将从HDFS中读取10个1000MB的文件:
      4. 1.1.4. (4) 清空测试数据
      5. 1.1.5. (4) nnbench测试[NameNode benchmark (nnbench)]
        1. 1.1.5.1. nnbench用于测试NameNode的负载,它会生成很多与HDFS相关的请求,给NameNode施加较大的压力。这个测试能在HDFS上模拟创建、读取、重命名和删除文件等操作。nnbench的用法如下:
          1. 1.1.5.1.1. 以下例子使用12个mapper和6个reducer来创建1000个文件:
      6. 1.1.6. (5) mrbench测试[MapReduce benchmark (mrbench)]
        1. 1.1.6.1. mrbench会多次重复执行一个小作业,用于检查在机群上小作业的运行是否可重复以及运行是否高效。mrbench的用法如下:
        2. 1.1.6.2. 以下例子会运行一个小作业50次:
        3. 1.1.6.3. 以下例子会运行一个小作业500次:
      7. 1.1.7. (6) Hadoop Examples
        1. 1.1.7.1. 除了上文提到的测试,Hadoop还自带了一些例子,比如WordCount和TeraSort,这些例子在hadoop-examples*.jar中。
        2. 1.1.7.2. 执行以下命令会列出所有的示例程序:
      8. 1.1.8. (7) TeraSort[TeraSort: Run the actual TeraSort benchmark]
        1. 1.1.8.1. 一个完整的TeraSort测试需要按以下三步执行:
      9. 1.1.9. (8) terasort-validate 验证是否有序
        1. 1.1.9.1. 以下命令运行TeraValidate来验证TeraSort输出的数据是否有序,如果检测到问题,将乱序的key输出到目录/examples/terasort-validate
      10. 1.1.10. (10) 总结
        1. 1.1.10.1. 在提交任务目录下会生成两个文件
        2. 1.1.10.2. 参考资料:
  2. 2. 二、hive/impala测试
    1. 2.0.1. Impala/hive性能报告:
      1. 2.0.1.1. (1) count(*)操作
      2. 2.0.1.2. (2) 两表join操作
    2. 2.0.2. (3) 统计结果

一. Hadoop基准测试

Hadoop自带了几个基准测试,被打包在几个jar包中。本文主要是cloudera版本测试

1
[hsu@server01 ~]$ ls /opt/cloudera/parcels/CDH-5.2.0-1.cdh5.2.0.p0.36/lib/hadoop-0.20-mapreduce/hadoop* | egrep "examples|test"
/opt/cloudera/parcels/CDH-5.2.0-1.cdh5.2.0.p0.36/lib/hadoop-0.20-mapreduce/hadoop-examples-2.5.0-mr1-cdh5.2.0.jar
/opt/cloudera/parcels/CDH-5.2.0-1.cdh5.2.0.p0.36/lib/hadoop-0.20-mapreduce/hadoop-examples.jar
/opt/cloudera/parcels/CDH-5.2.0-1.cdh5.2.0.p0.36/lib/hadoop-0.20-mapreduce/hadoop-test-2.5.0-mr1-cdh5.2.0.jar
/opt/cloudera/parcels/CDH-5.2.0-1.cdh5.2.0.p0.36/lib/hadoop-0.20-mapreduce/hadoop-test.jar

(1)、Hadoop Test

当不带参数调用hadoop-test-0.20.2-cdh3u3.jar时,会列出所有的测试程序:

1
[hsu@server01 ~]$ sudo hadoop jar /opt/cloudera/parcels/CDH-5.2.0-1.cdh5.2.0.p0.36/lib/hadoop-0.20-mapreduce/hadoop-test.jar 
An example program must be given as the first argument.
Valid program names are:
DFSCIOTest: Distributed i/o benchmark of libhdfs.
DistributedFSCheck: Distributed checkup of the file system consistency.
MRReliabilityTest: A program that tests the reliability of the MR framework by injecting faults/failures
TestDFSIO: Distributed i/o benchmark.
dfsthroughput: measure hdfs throughput
filebench: Benchmark SequenceFile(Input|Output)Format (block,record compressed and uncompressed), Text(Input|Output)Format (compressed and uncompressed)
loadgen: Generic map/reduce load generator
mapredtest: A map/reduce test check.
minicluster: Single process HDFS and MR cluster.
mrbench: A map/reduce benchmark that can create many small jobs
nnbench: A benchmark that stresses the namenode.
testarrayfile: A test for flat files of binary key/value pairs.
testbigmapoutput: A map/reduce program that works on a very big non-splittable file and does identity map/reduce
testfilesystem: A test for FileSystem read/write.
testmapredsort: A map/reduce program that validates the map-reduce framework's sort.
testrpc: A test for rpc.
testsequencefile: A test for flat files of binary key value pairs.
testsequencefileinputformat: A test for sequence file input format.
testsetfile: A test for flat files of binary key/value pairs.
testtextinputformat: A test for text input format.
threadedmapbench: A map/reduce benchmark that compares the performance of maps with multiple spills over maps with 1 spill

   == 这些程序从多个角度对Hadoop进行测试,TestDFSIO、mrbench和nnbench是三个广泛被使用的测试。

(2) TestDFSIO write

TestDFSIO用于测试HDFS的IO性能,使用一个MapReduce作业来并发地执行读写操作,每个map任务用于读或写每个文件,map的输出用于收集与处理文件相关的统计信息,reduce用于累积统计信息,并产生summary。TestDFSIO的用法如下:

1
TestDFSIO
Usage: TestDFSIO [genericOptions] -read | -write | -append | -clean [-nrFiles N] [-fileSize Size[B|KB|MB|GB|TB]] [-resFile resultFileName] [-bufferSize Bytes] [-rootDir]

以下的例子将往HDFS中写入10个1000MB的文件:

1
[hsu@server01 ~]$ sudo hadoop jar /opt/cloudera/parcels/CDH-5.2.0-1.cdh5.2.0.p0.36/lib/hadoop-0.20-mapreduce/hadoop-test.jar TestDFSIO -write -nrFiles 10 -fileSize 1000
15/01/13 15:14:17 INFO fs.TestDFSIO: TestDFSIO.1.7
15/01/13 15:14:17 INFO fs.TestDFSIO: nrFiles = 10
15/01/13 15:14:17 INFO fs.TestDFSIO: nrBytes (MB) = 1000.0
15/01/13 15:14:17 INFO fs.TestDFSIO: bufferSize = 1000000
15/01/13 15:14:17 INFO fs.TestDFSIO: baseDir = /benchmarks/TestDFSIO
15/01/13 15:14:18 INFO fs.TestDFSIO: creating control file: 1048576000 bytes, 10 files
15/01/13 15:14:19 INFO fs.TestDFSIO: created control files for: 10 files
15/01/13 15:15:23 INFO fs.TestDFSIO: ----- TestDFSIO ----- : write
15/01/13 15:15:23 INFO fs.TestDFSIO:            Date & time: Tue Jan 13 15:15:23 CST 2015
15/01/13 15:15:23 INFO fs.TestDFSIO:        Number of files: 10
15/01/13 15:15:23 INFO fs.TestDFSIO: Total MBytes processed: 10000.0
15/01/13 15:15:23 INFO fs.TestDFSIO:      Throughput mb/sec: 29.67623230554649
15/01/13 15:15:23 INFO fs.TestDFSIO: Average IO rate mb/sec: 29.899526596069336
15/01/13 15:15:23 INFO fs.TestDFSIO:  IO rate std deviation: 2.6268824639446526
15/01/13 15:15:23 INFO fs.TestDFSIO:     Test exec time sec: 64.203
15/01/13 15:15:23 INFO fs.TestDFSIO:

(3) TestDFSIO read

以下的例子将从HDFS中读取10个1000MB的文件:

1
[hsu@server01 ~]$ sudo hadoop jar /opt/cloudera/parcels/CDH-5.2.0-1.cdh5.2.0.p0.36/lib/hadoop-0.20-mapreduce/hadoop-test.jar TestDFSIO -read -nrFiles 10 -fileSize 1000
15/01/13 15:42:35 INFO fs.TestDFSIO: TestDFSIO.1.7
15/01/13 15:42:35 INFO fs.TestDFSIO: nrFiles = 10
15/01/13 15:42:35 INFO fs.TestDFSIO: nrBytes (MB) = 1000.0
15/01/13 15:42:35 INFO fs.TestDFSIO: bufferSize = 1000000
15/01/13 15:42:35 INFO fs.TestDFSIO: baseDir = /benchmarks/TestDFSIO
15/01/13 15:42:36 INFO fs.TestDFSIO: creating control file: 1048576000 bytes, 10 files
15/01/13 15:42:37 INFO fs.TestDFSIO: created control files for: 10 files

(4) 清空测试数据

1
[hsu@server01 ~]$ sudo hadoop jar /opt/cloudera/parcels/CDH-5.2.0-1.cdh5.2.0.p0.36/lib/hadoop-0.20-mapreduce/hadoop-test.jar TestDFSIO -clean
15/01/13 15:46:51 INFO fs.TestDFSIO: TestDFSIO.1.7
15/01/13 15:46:51 INFO fs.TestDFSIO: nrFiles = 1
15/01/13 15:46:51 INFO fs.TestDFSIO: nrBytes (MB) = 1.0
15/01/13 15:46:51 INFO fs.TestDFSIO: bufferSize = 1000000
15/01/13 15:46:51 INFO fs.TestDFSIO: baseDir = /benchmarks/TestDFSIO
15/01/13 15:46:52 INFO fs.TestDFSIO: Cleaning up test files

(4) nnbench测试[NameNode benchmark (nnbench)]

nnbench用于测试NameNode的负载,它会生成很多与HDFS相关的请求,给NameNode施加较大的压力。这个测试能在HDFS上模拟创建、读取、重命名和删除文件等操作。nnbench的用法如下:

以下例子使用12个mapper和6个reducer来创建1000个文件:
1
[hsu@server01 ~]$ sudo hadoop jar /opt/cloudera/parcels/CDH-5.2.0-1.cdh5.2.0.p0.36/lib/hadoop-0.20-mapreduce/hadoop-test.jar nnbench -operation create_write -maps 12 -reduces 6 -blockSize 1 -bytesToWrite 0 -numberOfFiles 1000 -replicationFactorPerFile 3 -readFileAfterOpen true -baseDir /benchmarks/NNBench-`hostname -s`
NameNode Benchmark 0.4
15/01/13 15:53:33 INFO hdfs.NNBench: Test Inputs: 
15/01/13 15:53:33 INFO hdfs.NNBench:            Test Operation: create_write
15/01/13 15:53:33 INFO hdfs.NNBench:                Start time: 2015-01-13 15:55:33,585
15/01/13 15:53:33 INFO hdfs.NNBench:            Number of maps: 12
15/01/13 15:53:33 INFO hdfs.NNBench:         Number of reduces: 6
15/01/13 15:53:33 INFO hdfs.NNBench:                Block Size: 1
15/01/13 15:53:33 INFO hdfs.NNBench:            Bytes to write: 0
15/01/13 15:53:33 INFO hdfs.NNBench:        Bytes per checksum: 1
15/01/13 15:53:33 INFO hdfs.NNBench:           Number of files: 1000
15/01/13 15:53:33 INFO hdfs.NNBench:        Replication factor: 3
15/01/13 15:53:33 INFO hdfs.NNBench:                  Base dir: /benchmarks/NNBench-server01
15/01/13 15:53:33 INFO hdfs.NNBench:      Read file after open: true
15/01/13 15:53:34 INFO hdfs.NNBench: Deleting data directory
15/01/13 15:53:34 INFO hdfs.NNBench: Creating 12 control files

15/01/13 15:56:06 INFO hdfs.NNBench: -------------- NNBench -------------- : 
15/01/13 15:56:06 INFO hdfs.NNBench:                                Version: NameNode Benchmark 0.4
15/01/13 15:56:06 INFO hdfs.NNBench:                            Date & time: 2015-01-13 15:56:06,539
15/01/13 15:56:06 INFO hdfs.NNBench: 
15/01/13 15:56:06 INFO hdfs.NNBench:                         Test Operation: create_write
15/01/13 15:56:06 INFO hdfs.NNBench:                             Start time: 2015-01-13 15:55:33,585
15/01/13 15:56:06 INFO hdfs.NNBench:                            Maps to run: 12
15/01/13 15:56:06 INFO hdfs.NNBench:                         Reduces to run: 6
15/01/13 15:56:06 INFO hdfs.NNBench:                     Block Size (bytes): 1
15/01/13 15:56:06 INFO hdfs.NNBench:                         Bytes to write: 0
15/01/13 15:56:06 INFO hdfs.NNBench:                     Bytes per checksum: 1
15/01/13 15:56:06 INFO hdfs.NNBench:                        Number of files: 1000
15/01/13 15:56:06 INFO hdfs.NNBench:                     Replication factor: 3
15/01/13 15:56:06 INFO hdfs.NNBench:             Successful file operations: 0
15/01/13 15:56:06 INFO hdfs.NNBench: 
15/01/13 15:56:06 INFO hdfs.NNBench:         # maps that missed the barrier: 0
15/01/13 15:56:06 INFO hdfs.NNBench:                           # exceptions: 0
15/01/13 15:56:06 INFO hdfs.NNBench: 
15/01/13 15:56:06 INFO hdfs.NNBench:                TPS: Create/Write/Close: 0
15/01/13 15:56:06 INFO hdfs.NNBench: Avg exec time (ms): Create/Write/Close: 0.0
15/01/13 15:56:06 INFO hdfs.NNBench:             Avg Lat (ms): Create/Write: NaN
15/01/13 15:56:06 INFO hdfs.NNBench:                    Avg Lat (ms): Close: NaN
15/01/13 15:56:06 INFO hdfs.NNBench: 
15/01/13 15:56:06 INFO hdfs.NNBench:                  RAW DATA: AL Total #1: 0
15/01/13 15:56:06 INFO hdfs.NNBench:                  RAW DATA: AL Total #2: 0
15/01/13 15:56:06 INFO hdfs.NNBench:               RAW DATA: TPS Total (ms): 0
15/01/13 15:56:06 INFO hdfs.NNBench:        RAW DATA: Longest Map Time (ms): 0.0
15/01/13 15:56:06 INFO hdfs.NNBench:                    RAW DATA: Late maps: 0
15/01/13 15:56:06 INFO hdfs.NNBench:              RAW DATA: # of exceptions: 0
15/01/13 15:56:06 INFO hdfs.NNBench:

(5) mrbench测试[MapReduce benchmark (mrbench)]

mrbench会多次重复执行一个小作业,用于检查在机群上小作业的运行是否可重复以及运行是否高效。mrbench的用法如下:

1
[hsu@server01 ~]$ sudo hadoop jar /opt/cloudera/parcels/CDH-5.2.0-1.cdh5.2.0.p0.36/lib/hadoop-0.20-mapreduce/hadoop-test.jar mrbench --help
MRBenchmark.0.0.2
Usage: mrbench [-baseDir <base DFS path for output/input, default is /benchmarks/MRBench>] [-jar <local path to job jar file containing Mapper and Reducer implementations, default is current jar file>] [-numRuns <number of times to run the job, default is 1>] [-maps <number of maps for each run, default is 2>] [-reduces <number of reduces for each run, default is 1>] [-inputLines <number of input lines to generate, default is 1>] [-inputType <type of input to generate, one of ascending (default), descending, random>] [-verbose]

以下例子会运行一个小作业50次:

1
[hsu@server01 ~]$ sudo hadoop jar /opt/cloudera/parcels/CDH-5.2.0-1.cdh5.2.0.p0.36/lib/hadoop-0.20-mapreduce/hadoop-test.jar mrbench -numRuns 50
MRBenchmark.0.0.2
15/01/13 16:17:19 INFO mapred.MRBench: creating control file: 1 numLines, ASCENDING sortOrder
15/01/13 16:17:20 INFO mapred.MRBench: created control file: /benchmarks/MRBench/mr_input/input_331064064.txt
15/01/13 16:17:20 INFO mapred.MRBench: Running job 0: input=hdfs://server01:8020/benchmarks/MRBench/mr_input output=hdfs://server01:8020/benchmarks/MRBench/mr_output/output_556018847

DataLines       Maps    Reduces AvgTime (milliseconds)
1               2       1       26748

以上结果表示平均作业完成时间是26秒。

以下例子会运行一个小作业500次:

1
[hsu@server01 ~]$ sudo hadoop jar /opt/cloudera/parcels/CDH-5.2.0-1.cdh5.2.0.p0.36/lib/hadoop-0.20-mapreduce/hadoop-test.jar mrbench -numRuns 500 -maps 20 -reduces 10 -inputLines 50 -verbose
MRBenchmark.0.0.2
15/01/14 10:43:53 INFO mapred.MRBench: creating control file: 1 numLines, ASCENDING sortOrder
15/01/14 10:43:54 INFO mapred.MRBench: created control file: /benchmarks/MRBench/mr_input/input_-1773312505.txt
15/01/14 10:43:54 INFO mapred.MRBench: Running job 0: input=hdfs://server01:8020/benchmarks/MRBench/mr_input output=hdfs://server01:8020/benchmarks/MRBench/mr_output/output_-447811996
15/01/14 10:43:54 INFO client.RMProxy: Connecting to ResourceManager at server01/135.33.5.53:8032
15/01/14 10:43:54 INFO client.RMProxy: Connecting to ResourceManager at server01/135.33.5.53:8032
15/01/14 10:43:54 INFO mapred.FileInputFormat: Total input paths to process : 1
15/01/14 10:43:55 INFO mapreduce.JobSubmitter: number of splits:2
15/01/14 10:43:55 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1420542591388_0112
15/01/14 10:43:55 INFO impl.YarnClientImpl: Submitted application application_1420542591388_0112
15/01/14 10:43:55 INFO mapreduce.Job: The url to track the job: http://server01:8088/proxy/application_1420542591388_0112/
15/01/14 10:43:55 INFO mapreduce.Job: Running job: job_1420542591388_0112
15/01/14 10:44:06 INFO mapreduce.Job: Job job_1420542591388_0112 running in uber mode : false
Total milliseconds for task: 494 = 29859
Total milliseconds for task: 495 = 29878
Total milliseconds for task: 496 = 29908
Total milliseconds for task: 497 = 29943
Total milliseconds for task: 498 = 29897
Total milliseconds for task: 499 = 29919
Total milliseconds for task: 500 = 28881
DataLines       Maps    Reduces AvgTime (milliseconds)
50              40      20      31298

以上结果表示平均作业完成时间是31秒。

(6) Hadoop Examples

除了上文提到的测试,Hadoop还自带了一些例子,比如WordCount和TeraSort,这些例子在hadoop-examples*.jar中。

1
[hsu@server01 ~]$ ls /opt/cloudera/parcels/CDH-5.2.0-1.cdh5.2.0.p0.36/lib/hadoop-0.20-mapreduce/hadoop-examples*
/opt/cloudera/parcels/CDH-5.2.0-1.cdh5.2.0.p0.36/lib/hadoop-0.20-mapreduce/hadoop-examples-2.5.0-mr1-cdh5.2.0.jar
/opt/cloudera/parcels/CDH-5.2.0-1.cdh5.2.0.p0.36/lib/hadoop-0.20-mapreduce/hadoop-examples.jar

执行以下命令会列出所有的示例程序:

1
[hsu@server01 ~]$ sudo hadoop jar /opt/cloudera/parcels/CDH-5.2.0-1.cdh5.2.0.p0.36/lib/hadoop-0.20-mapreduce/hadoop-examples.jar
  An example program must be given as the first argument.
  Valid program names are:
  aggregatewordcount: An Aggregate based map/reduce program that counts the words in the input files.
  aggregatewordhist: An Aggregate based map/reduce program that computes the histogram of the words in the input files.
  bbp: A map/reduce program that uses Bailey-Borwein-Plouffe to compute exact digits of Pi.
  dbcount: An example job that count the pageview counts from a database.
  distbbp: A map/reduce program that uses a BBP-type formula to compute exact bits of Pi.
  grep: A map/reduce program that counts the matches of a regex in the input.
  join: A job that effects a join over sorted, equally partitioned datasets
  multifilewc: A job that counts words from several files.
  pentomino: A map/reduce tile laying program to find solutions to pentomino problems.
  pi: A map/reduce program that estimates Pi using a quasi-Monte Carlo method.
  randomtextwriter: A map/reduce program that writes 10GB of random textual data per node.
  randomwriter: A map/reduce program that writes 10GB of random data per node.
  secondarysort: An example defining a secondary sort to the reduce.
  sort: A map/reduce program that sorts the data written by the random writer.
  sudoku: A sudoku solver.
  teragen: Generate data for the terasort
  terasort: Run the terasort
  teravalidate: Checking results of terasort
  wordcount: A map/reduce program that counts the words in the input files.
  wordmean: A map/reduce program that counts the average length of the words in the input files.
  wordmedian: A map/reduce program that counts the median length of the words in the input files.
  wordstandarddeviation: A map/reduce program that counts the standard deviation of the length of the words in the input files.

(7) TeraSort[TeraSort: Run the actual TeraSort benchmark]

一个完整的TeraSort测试需要按以下三步执行:

  • 1、用TeraGen生成随机数据
  • 2、对输入数据运行TeraSort
  • 3、用TeraValidate验证排好序的输出数据并不需要在每次测试时都生成输入数据,生成一次数据之后,每次测试可以跳过第一步。

  • TeraGen的用法如下:

    1
    
    $ hadoop jar hadoop-*examples*.jar teragen <number of 100-byte rows> <output dir>
    

以下命令运行TeraGen生成10GB的输入数据,并输出到目录/examples/terasort-input:

1
[hsu@server01 ~]$ sudo hadoop jar /opt/cloudera/parcels/CDH-5.2.0-1.cdh5.2.0.p0.36/lib/hadoop-0.20-mapreduce/hadoop-examples.jar teragen 100000000 /examples/terasort-input
			15/01/13 16:57:34 INFO client.RMProxy: Connecting to ResourceManager at server01/135.33.5.53:8032
			15/01/13 16:57:35 INFO terasort.TeraSort: Generating 100000000 using 2
			15/01/13 16:57:35 INFO mapreduce.JobSubmitter: number of splits:2
			15/01/13 16:59:07 INFO mapreduce.Job: Job job_1420542591388_0105 completed successfully
			15/01/13 16:59:08 INFO mapreduce.Job: Counters: 31
			        File System Counters
			                FILE: Number of bytes read=0
			                FILE: Number of bytes written=211922
			                FILE: Number of read operations=0
			                FILE: Number of large read operations=0
			                FILE: Number of write operations=0
			                HDFS: Number of bytes read=170
			                HDFS: Number of bytes written=10000000000
			                HDFS: Number of read operations=8
			                HDFS: Number of large read operations=0
			                HDFS: Number of write operations=4
			        Job Counters 
			                Launched map tasks=2
			                Other local map tasks=2
			                Total time spent by all maps in occupied slots (ms)=150416
			                Total time spent by all reduces in occupied slots (ms)=0
			                Total time spent by all map tasks (ms)=150416
			                Total vcore-seconds taken by all map tasks=150416
			                Total megabyte-seconds taken by all map tasks=154025984
			        Map-Reduce Framework
			                Map input records=100000000
			                Map output records=100000000
			                Input split bytes=170
			                Spilled Records=0
			                Failed Shuffles=0
			                Merged Map outputs=0
			                GC time elapsed (ms)=1230
			                CPU time spent (ms)=175090
			                Physical memory (bytes) snapshot=504807424
			                Virtual memory (bytes) snapshot=3230924800
			                Total committed heap usage (bytes)=1363148800
			        org.apache.hadoop.examples.terasort.TeraGen$Counters
			                CHECKSUM=214760662691937609
			        File Input Format Counters 
			                Bytes Read=0
			        File Output Format Counters 
			                Bytes Written=10000000000
  • TeraGen产生的数据每行的格式如下:

    <10 bytes key><10 bytes rowid><78 bytes filler>\r\n
    

    ** 其中:
    1、key是一些随机字符,每个字符的ASCII码取值范围为[32, 126] 
    2、rowid是一个整数,右对齐 
    3、filler由7组字符组成,每组有10个字符(最后一组8个),字符从’A’到’Z’依次取值

  • 以下命令运行TeraSort对数据进行排序,并将结果输出到目录/examples/terasort-output:
    1
    
    [hsu@server01 ~]$ sudo hadoop jar /opt/cloudera/parcels/CDH-5.2.0-1.cdh5.2.0.p0.36/lib/hadoop-0.20-mapreduce/hadoop-examples.jar terasort /examples/terasort-input /examples/terasort-output
    15/01/13 17:08:08 INFO terasort.TeraSort: starting
    15/01/13 17:08:10 INFO input.FileInputFormat: Total input paths to process : 2
    Spent 187ms computing base-splits.
    Spent 3ms computing TeraScheduler splits.
    Computing input splits took 192ms
    Sampling 10 splits of 76
    Making 144 from 100000 sampled records
    Computing parititions took 596ms
    Spent 791ms computing partitions.terasort /examples/terasort-input /examples/terasort-output
    15/01/13 17:09:13 INFO mapreduce.Job: Counters: 50
            File System Counters
                    FILE: Number of bytes read=4461968618
                    FILE: Number of bytes written=8889668662
                    FILE: Number of read operations=0
                    FILE: Number of large read operations=0
                    FILE: Number of write operations=0
                    HDFS: Number of bytes read=10000010260
                    HDFS: Number of bytes written=10000000000
                    HDFS: Number of read operations=660
                    HDFS: Number of large read operations=0
                    HDFS: Number of write operations=288
            Job Counters 
                    Launched map tasks=76
                    Launched reduce tasks=144
                    Data-local map tasks=75
                    Rack-local map tasks=1
                    Total time spent by all maps in occupied slots (ms)=933160
                    Total time spent by all reduces in occupied slots (ms)=1227475
                    Total time spent by all map tasks (ms)=933160
                    Total time spent by all reduce tasks (ms)=1227475
                    Total vcore-seconds taken by all map tasks=933160
                    Total vcore-seconds taken by all reduce tasks=1227475
                    Total megabyte-seconds taken by all map tasks=955555840
                    Total megabyte-seconds taken by all reduce tasks=1256934400
            Map-Reduce Framework
                    Map input records=100000000
                    Map output records=100000000
                    Map output bytes=10200000000
                    Map output materialized bytes=4403942936
                    Input split bytes=10260
                    Combine input records=0
                    Combine output records=0
                    Reduce input groups=100000000
                    Reduce shuffle bytes=4403942936
                    Reduce input records=100000000
                    Reduce output records=100000000
                    Spilled Records=200000000
                    Shuffled Maps =10944
                    Failed Shuffles=0
                    Merged Map outputs=10944
                    GC time elapsed (ms)=45169
                    CPU time spent (ms)=2021010
                    Physical memory (bytes) snapshot=95792517120
                    Virtual memory (bytes) snapshot=357225058304
                    Total committed heap usage (bytes)=174283816960
            Shuffle Errors
                    BAD_ID=0
                    CONNECTION=0
                    IO_ERROR=0
                    WRONG_LENGTH=0
                    WRONG_MAP=0
                    WRONG_REDUCE=0
            File Input Format Counters 
                    Bytes Read=10000000000
            File Output Format Counters 
                    Bytes Written=10000000000
    15/01/13 17:09:13 INFO terasort.TeraSort: done
    

(8) terasort-validate 验证是否有序

以下命令运行TeraValidate来验证TeraSort输出的数据是否有序,如果检测到问题,将乱序的key输出到目录/examples/terasort-validate

1
[hsu@server01 ~]$ sudo hadoop jar /opt/cloudera/parcels/CDH-5.2.0-1.cdh5.2.0.p0.36/lib/hadoop-0.20-mapreduce/hadoop-examples.jar teravalidate /examples/terasort-output /examples/terasort-validate
	15/01/13 17:17:37 INFO client.RMProxy: Connecting to ResourceManager at server01/135.33.5.53:8032
	15/01/13 17:17:38 INFO input.FileInputFormat: Total input paths to process : 144
	Spent 93ms computing base-splits.
	Spent 3ms computing TeraScheduler splits.
	15/01/13 17:17:38 INFO mapreduce.JobSubmitter: number of splits:144
	15/01/13 17:17:38 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1420542591388_0107
	15/01/13 17:17:38 INFO impl.YarnClientImpl: Submitted application application_1420542591388_0107teravalidate /examples/terasort-output /examples/terasort-validate
	15/01/13 17:18:12 INFO mapreduce.Job: Job job_1420542591388_0107 completed successfully
	15/01/13 17:18:12 INFO mapreduce.Job: Counters: 50
	        File System Counters
	                FILE: Number of bytes read=6963
	                FILE: Number of bytes written=15445453
	                FILE: Number of read operations=0
	                FILE: Number of large read operations=0
	                FILE: Number of write operations=0
	                HDFS: Number of bytes read=10000019584
	                HDFS: Number of bytes written=25
	                HDFS: Number of read operations=435
	                HDFS: Number of large read operations=0
	                HDFS: Number of write operations=2
	        Job Counters 
	                Launched map tasks=144
	                Launched reduce tasks=1
	                Data-local map tasks=142
	                Rack-local map tasks=2
	                Total time spent by all maps in occupied slots (ms)=685624
	                Total time spent by all reduces in occupied slots (ms)=3384
	                Total time spent by all map tasks (ms)=685624
	                Total time spent by all reduce tasks (ms)=3384
	                Total vcore-seconds taken by all map tasks=685624
	                Total vcore-seconds taken by all reduce tasks=3384
	                Total megabyte-seconds taken by all map tasks=702078976
	                Total megabyte-seconds taken by all reduce tasks=3465216
	        Map-Reduce Framework
	                Map input records=100000000
	                Map output records=432
	                Map output bytes=11664
	                Map output materialized bytes=13830
	                Input split bytes=19584
	                Combine input records=0
	                Combine output records=0
	                Reduce input groups=289
	                Reduce shuffle bytes=13830
	                Reduce input records=432
	                Reduce output records=1
	                Spilled Records=864
	                Shuffled Maps =144
	                Failed Shuffles=0
	                Merged Map outputs=144
	                GC time elapsed (ms)=4014
	                CPU time spent (ms)=334280
	                Physical memory (bytes) snapshot=85470654464
	                Virtual memory (bytes) snapshot=234019295232
	                Total committed heap usage (bytes)=114868879360
	        Shuffle Errors
	                BAD_ID=0
	                CONNECTION=0
	                IO_ERROR=0
	                WRONG_LENGTH=0
	                WRONG_MAP=0
	                WRONG_REDUCE=0
	        File Input Format Counters 
	                Bytes Read=10000000000
	        File Output Format Counters 
	                Bytes Written=25

		[hsu@server01 ~]$ hadoop fs -cat /examples/terasort-validate/*                                                           checksum        2fafbaf537afd49

结论:检测通过

(10) 总结

在提交任务目录下会生成两个文件

1
[hsu@server01 ~]$ LANG=en
[hsu@server01 ~]$ ll
total 16
-rw-r--r-- 1 root root 1142 Jan 13 15:56 NNBench_results.log
-rw-r--r-- 1 root root  903 Jan 13 15:43 TestDFSIO_results.log

约对176838144行数据进行排序,部分数据:

1
0000000: 	00 00 00 a7 0d 2a a8 02 da da 00 11 30 30 30 30	  .....*......0000
0000010: 	30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30	  0000000000000000

 

参考资料:

http://www.michael-noll.com/blog/2011/04/09/benchmarking-and-stress-testing-an-hadoop-cluster-with-terasort-testdfsio-nnbench-mrbench/
https://github.com/intel-hadoop/HiBench

二、hive/impala测试

Impala/hive性能报告:

下面对event_calling_201410(39.8G)和event_sms_201410(39.8G)做join操作和count(*):

(1) count(*)操作

1
[yndx-bigdata-hadoop02:21000] > select count(*) from event_calling_201410;
Query: select count(*) from event_calling_201410
+-----------+
| count(*)  |
+-----------+
| 425883373 |
+-----------+
Fetched 1 row(s) in 192.75s
hive (i_bil_hb_m)> select count(*) from event_calling_201410;
Total jobs = 1
Launching Job 1 out of 1
OK
_c0
425883373
Time taken: 386.804 seconds, Fetched: 1 row(s)
[yndx-bigdata-hadoop02:21000] > select count(*) from event_sms_201410;
Query: select count(*) from event_sms_201410
+----------+
| count(*) |
+----------+
| 80675409 |
+----------+
Fetched 1 row(s) in 33.52s

(2) 两表join操作

1
hive (i_bil_hb_m)> select count(*) from event_calling_201410 c left outer join event_sms_201410 s on(s.calling_nbr=c.calling_nbr);  
Total jobs = 2
Stage-1 is selected by condition resolver.
Launching Job 1 out of 2
Number of reduce tasks not specified. Estimated from input data size: 279
In order to change the average load for a reducer (in bytes):
  set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
  set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
  set mapreduce.job.reduces=<number>
Starting Job = job_1420542591388_0987, Tracking URL = http://yndx-bigdata-hadoop01:8088/proxy/application_1420542591388_0987/
Kill Command = /opt/cloudera/parcels/CDH-5.2.0-1.cdh5.2.0.p0.36/lib/hadoop/bin/hadoop job  -kill job_1420542591388_0987
Hadoop job information for Stage-1: number of mappers: 1110; number of reducers: 279
2015-01-15 10:44:01,665 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 19731.27 sec
MapReduce Total cumulative CPU time: 0 days 5 hours 28 minutes 51 seconds 270 msec
Ended Job = job_1420542591388_0987
Launching Job 2 out of 2
Number of reduce tasks determined at compile time: 1
In order to change the average load for a reducer (in bytes):
  set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
  set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
  set mapreduce.job.reduces=<number>
2015-01-15 10:44:33,709 Stage-2 map = 100%,  reduce = 100%, Cumulative CPU 15.28 sec
MapReduce Total cumulative CPU time: 15 seconds 280 msec
Ended Job = job_1420542591388_0988
MapReduce Jobs Launched: 
Stage-Stage-1: Map: 1110  Reduce: 279   Cumulative CPU: 19731.27 sec   HDFS Read: 298693978456 HDFS Write: 32922 SUCCESS
Stage-Stage-2: Map: 7  Reduce: 1   Cumulative CPU: 15.28 sec   HDFS Read: 97828 HDFS Write: 12 SUCCESS
Total MapReduce CPU Time Spent: 0 days 5 hours 29 minutes 6 seconds 550 msec
OK
_c0
13106534553
Time taken: 413.651 seconds, Fetched: 1 row(s)
[yndx-bigdata-hadoop02:21000] >  select count(*) from event_calling_201410 c left outer join event_sms_201410 s on(s.calling_nbr=c.calling_nbr);
Query: select count(*) from event_calling_201410 c left outer join event_sms_201410 s on(s.calling_nbr=c.calling_nbr)
 +-------------+
| count(*)    |
+-------------+
| 13106534553 |
+-------------+
Fetched 1 row(s) in 525.48s

(3) 统计结果

1
Action		数据量(G)	   HiveTime(s)	   ImpalaTime(s) Hive结论 Imapla结论
Count(*)	 39.8			386.804			192.75		通过  警告阈值(内存)
join(2)		 39.8*2			413.651			525.48		通过  警告阈值(内存)