课程学习地址:http://www.xuetuwuyou.com/course/303
课程出自学途无忧网:http://www.xuetuwuyou.com

机器学习是近二十来年兴起的多领域学科,机器学习算法可从数据中建立模型,并利用模型对未知数据进行预测。机器学习技术不断进步,应用相当广泛,例如推荐引擎、定向广告、需求预测、垃圾邮件过滤、医学诊断、自然语言处理、搜索引擎、诈骗侦测、证券分析、视觉辨识、语音识别、手写识别等。


为什么近年来机器学习变得如此热门,各大公司都争相投入?因为机器学习需要大量数据进行训练。大数据的兴起带来了大量的数据以及可存储大量数据的分布式存储技术,例如Hadoop HDFS、NoSQL……还有分布式计算可进行大量运算,例如 Spark 基于内存的分布式计算框架/架构,可以大幅提升性能。


Python是数据分析最常用的语言之一,而Apache Spark是一个开源的强大的分布式查询和处理引擎。本书用详尽的例子介绍了如何使用Python来调用Spark的新特性,如何处理结构化和非结构化的数据,如何使用PySpark中一些基本的可用数据类型,如何生成机器学习模型、操作图像、阅读串流数据以及在云上部署你的模型。

本课程系统讲解如何在Spark2.0上高效运用Python来处理数据并建立机器学习模型,帮助读者开发并部署高效可拓展的实时Spark解决方案


课程包含技术:

本课程从浅显易懂的“大数据和机器学习”原理说明入手,讲述大数据和机器学习的基本概念,如分析、分类、训练、建模、预测、推荐引擎、二元分类、多元分类、回归分析和Pipeline等;

为降低学习大数据技术的门槛,提供了丰富的案例实践操作和范例程序编码,展示了如何在单机Windows系统上建立Spark 2.x + Python开发环境

适合于学习大数据基础知识的初学者,更适合正在使用机器学习想结合大数据技术的人员